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How to Estimate Risk Ratios 
Stephen Parry 

1 Introduction 
Risk ratios provide statisticians with a way to compare the risk of an event between two groups. 
A risk ratio can be defined as the ratio of the probability of the event occurring in a treatment 
group to the probability of the event occurring in a control group. 

2 Estimating Risk Ratios 
There are several ways to estimate risk ratios. Formulas can be used to convert odds ratios to risk 
ratios, but these formulas can produce biased results. Calculating risk ratios directly from 
generalized linear models and their extensions is preferable (Schmidt, 2008). 

A generalized linear model requires a probability distribution from the exponential family and a 
continuous link function. Logistic regression is one example of a generalized linear model, 
which is estimated by specifying a binomial distribution and a logit link function. If a log link is 
used with a binomial distribution, risk ratios can be then obtained by exponentiating the 
coefficients. (Note that fitting a binomial GLM with a log link is not the same as logistic 
regression.) However, this type of model may have convergence issues. As an alternative, one 
can model binary data using a generalized linear model with a Poisson distribution and a log 
link. Exponentiating the coefficients will again give you estimates of the risk ratio. An important 
property of the Poisson distribution is that the variance of the Poisson is equal to the mean. 

When a Poisson regression is applied to binomial data, the model will be under-dispersed, 
causing the standard errors to be overestimated (Zhu, 2004). To reduce the bias, there are several 
other models that can be estimated. The quasi-Poisson distribution can be used to estimate a 
scale parameter, which allows the variance to be a multiple of the mean. Another possible 
solution is to estimate a generalized estimating equation (GEE), with clustering at the residual 
level, to estimate a scale parameter. 

3 Example calculations 
To show how the estimated risk ratios and their standard errors differ depending on the model, 
we will estimate the models described above using simulated data In this simulated dataset, 
information on 100 individuals such as their gender, age, and whether the individual was in the 
control group or treatment group is given. Table 3.1 displays the data for the first six simulated 
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individuals. Table 3.2 displays the number of subjects in each treatment group with and without 
disease. 

Table 3.1: First six rows of the simulated dataset. 

outcome age treatment gender 
0 25 1 1 
1 25 0 0 
0 25 1 1 
0 25 1 0 
0 25 1 0 
1 25 0 0 

Table 3.2: Number of subjects in each group with and without disease. 

No disease Disease 
Control group 24 23 
Treatment group 40 13 

We would like to estimate the risk ratio for each of these variables (treatment group, age, and 
gender) while controlling for the other variables. Estimates of risk ratios, with standard errors in 
parentheses, are provided in Table 3.3 for each of the models described previously. As an 
example, R code for fitting each of these models is given below. 

library(geepack) 
# Binomial model with log link 
model.bin <- glm(outcome ~ treatment + gender + age, data = dat, family = bin 
omial(log)) 
# Poisson 
model.pos <- glm(outcome ~ treatment + gender + age, data = dat, family = poi 
sson(log)) 
# Quasi-Poisson 
model.qpos <- glm(outcome ~ treatment + gender + age, data = dat, family = qu 
asipoisson()) 
# Poisson GEE 
model.gee <- geeglm(outcome ~ treatment + gender + age, data = dat, id = id, 
corstr = "independence", family = poisson()) 

The control group is the reference level for the treatment variable, female is the reference level 
for the gender variable. For a continuous variable like age, the risk ratio is the probability of 
disease at age � + 1 divided by the probability of disease at age �, where � is a fixed number of 
years. 



 

 

 
    

 
    

 
    

 
    

 
   

 

 
 

 

 
 

  

 

 

 

 

 

 

Cornell Statistical Consulting Unit 

Table 3.3: Risk ratios and standard errors (in parentheses). 

Binomial with Poisson with Quasi-Poisson Poisson 
log link log link with log link GEE 

Treatment 0.4624 0.4743 0.4743 0.4743 
(0.1258) (0.1653) (0.1355) (0.1308) 

Gender 0.5224 0.5475 0.5475 0.5475 
(0.1452) (0.1943) (0.1592) (0.155) 

Age 0.9922 0.9992 0.9992 0.9992 
(0.0161) (0.0227) (0.0186) (0.0166) 

Scale 0.672 0.6449 
Parameter (0.1777) 

From the table above, we can see that the estimates of the risk ratios are similar when a Poisson 
model or a binomial model is used, but the standard errors vary depending on the model. The 
scale parameter estimated in the quasi-Poisson model is 0.672. Since this value is less than 1, the 
Poisson model has under-dispersion. The square root of the scale parameter is 0.82, which 
indicates that the standard errors of the Poisson model have been decreased by a factor of 0.82 
for the quasi-Poisson model. The estimates, standard errors, and scale parameter of the Poisson 
GEE model are very similar to those from the quasi-Poisson model. 

Presenting risk ratios is, in most situations, an appropriate alternative to reporting odds ratios; 
however, one must be careful to estimate and label them appropriately. 
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