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Poisson Regression: Lack of Fit is Not the Same as 
Overdispersion 

Haim Bar, Hongyu Li 

1 Introduction 
In statistical analysis of count data, it is often assumed that the dependent variable follows a 
Poisson distribution. This implies that the mean (the expected count) is equal to the variance. In 
practice, however, one often observes that the variance is much larger than the mean. This is 
often referred to as “overdispersion” with respect to the Poisson distribution. Statistical software 
packages make it very easy to specify a more flexible model that allows for the variance to be 
larger than the mean, for example, by adding an overdispersion parameter to model this extra 
variance or by assuming that the dependent variable follows a negative binomial distribution. 
However, this approach may be inappropriate and may lead to biased regression estimates, if the 
real reason for the larger-than-expected variance is a misspecified model (“lack of fit”). The 
objective of this newsletter is to clarify that “lack of fit” should not be confused with 
“overdispersion”. 

2 Example 
In Poisson regression, the logarithm of the expected count is assumed to be a linear function of 
some predictors, log(�!) = �" + �#�!# +⋯�$�!$ where �! is the expected count of the �th 
observation. In the case of Poisson regression, lack of fit means that the log of the expected 
counts cannot be predicted by �" + �#�!# +⋯+ �$�!$. 

To illustrate that lack of fit should not be confused with overdispersion, we simulate � = 100 
counts �! from a Poisson distribution where the expected counts are related to a single predictor 
�! as follows: log(�!) = �!%. We start by fitting a (misspecified) log-linear model log(�!) = �" + 
�#�!. Using the Generalized Linear Models (GLM) framework, we fit this linear model with and 
without overdispersion. Table 2.1 displays the coefficient estimates and standard errors without 
accounting for overdispersion and Table 2.2 displays the estimates and standard errors while 
allowing for overdispersion. 

Table 2.1: Coefficient estimates and standard errors for the misspecified model without allowing for overdispersion 
(dispersion parameter fixed at 1). 

Estimate Std. Error Z value P value 
Intercept 1.953 0.04 48.343 < 0.0001 

x −0.255 0.034 −7.45 < 0.0001 
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Table 2.2: Coefficient estimates and standard errors for the misspecified model with estimated overdispersion 
parameter 16.48. 

Estimate Std. Error Z value P value 
Intercept 1.953 0.164 11.908 < 0.0001 

x −0.255 0.139 −1.835 0.066 

The slope for � in the misspecified model is significant when we do not account for 
overdispersion. However, the residual deviance is 1061.06 on 98 degrees of freedom, suggesting 
that the model does not fit the data well. Often, researchers assume that this is due to 
overdispersion. To account for overdispersion, one can compute an estimated overdispersion 
parameter equal to the sum of the squared Pearson residuals divided by the residual degrees of 
freedom, in this case � = 1615.04/98 = 16.48, and multiply the standard errors by 9� = 
4.06. The parameter estimates do not change, but the P-value for � is now about 0.07, far larger 
than the model without accounting for overdispersion. Often researchers would stop here 
assuming this to be the final model. 

In contrast, if we fit the correct model including a quadratic term for �, we obtain the results in 
Table 2.3 (without adjusting for overdispersion) and Table 2.4 (including an overdispersion 
adjustment). 

Table 2.3: Coefficient estimates and standard errors for the correctly specified model without allowing for 
overdispersion (dispersion parameter fixed at 1). 

Estimate Std. Error Z value P value 
Intercept 0.145 0.094 1.541 0.123 

x 0.032 0.024 1.328 0.184 

�! 0.974 0.034 28.815 < 0.0001 

Table 2.4: Coefficient estimates and standard errors for the correctly specified model with estimated overdispersion 
parameter 1.14. 

Estimate Std. Error Z value P value 
Intercept 0.145 0.382 0.38 0.704 

x 0.032 0.098 0.327 0.744 

�! 0.974 0.137 7.098 < 0.0001 

Once the model is correctly specified, then excess variation may be considered as overdispersion 
and it is possible to proceed by adjusting the standard errors. In this case the estimated 
overdispersion parameter is 1.14, indicating that there is hardly any overdisperion, which is also 
reflected by the fact that the standard error, test statistic and p-value do not change very much 
from Table 2.3 to Table 2.4. Indeed, when the lack of fit statistic is not significant, it is not 
necessary to adjust the standard errors. What appeared to be overdispersion in the previous 
model was in fact due to lack of fit caused by having an important variable missing in the model. 
To assess whether excess variation is due to a misspecified model, it is (as always) a good idea to 
plot the dependent variable versus the predictor. Figure 2.1 shows the simulated data and the 
fitted regression lines for the linear (misspecified) and quadratic (correctly specified) models). 
Note that since the response variable can be equal to zero, we plot log(� + 1) rather than log(�). 
There is a clear quadratic relationship between the predictor, �, and the logarithm of the counts 
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(plus one). The model that assumes a linear relationship clearly does not fit the data, whereas the 
quadratic model fits the data well. 

Figure 2.1: Observed data with fitted linear and quadratic models. 
Reference: J Quant Criminol (2008) 24: 269-284, Overdispersion and Poisson Regression. 
Richard Berk and John M. MacDonald 
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