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1 Overview 
Ordinal logistic regression is a statistical analysis method that can be used to model the 
relationship between an ordinal response variable and one or more explanatory variables. An 
ordinal variable is a categorical variable for which there is a clear ordering of the category levels. 
The explanatory variables may be either continuous or categorical. Estimating ordinal logistic 
regression models with statistical software is not difficult, but the interpretation of the model 
output can be cumbersome. 
Ordinal logistic regression is an extension of logistic regression where the logit (i.e. the log 
odds) of a binary response is linearly related to the independent variables. If instead the response 
variable has k levels, then there are k-1 logits. A major assumption of ordinal logistic regression 
is the assumption of proportional odds: the effect of an independent variable is constant for each 
increase in the level of the response. Hence the output of an ordinal logistic regression will 
contain an intercept for each level of the response except one, and a single slope for each 
explanatory variable. 
There are several ways in which an ordinal regression model can be parameterized and different 
statistical software packages use different parameterizations. Thus, great care should be taken 
when interpreting the output from ordinal regression models. We will consider an example to 
illustrate the different model parameterizations and corresponding interpretation for several 
commonly used statistical software packages. 

2 Example dataset 
Suppose that customers at a bedding store are asked to rate how comfortable they find a newly 
engineered mattress on a scale from 1 to 3; 1 for uncomfortable, 2 for comfortable, 3 for very 
comfortable. The categorical explanatory variable of interest is the gender of the respondent; 0 
for female, 1 for male. The simulated dataset consists of 400 total observations. Table 2.1 
displays the number and proportion of participants within each gender responding with each of 
the rating categories. 

Table 2.1: Number and proportion of females and males who responded in each rating category. 
Female (0) Male (1) 

Uncomfortable (1) 28 (0.136) 30 (0.155) 
Comfortable (2) 63 (0.306) 64 (0.33) 

https://cornell.box.com/v/ordlogistic-data
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Female (0) Male (1) 
Very Comfortable (3) 115 (0.558) 100 (0.515) 

3 Parameterizations of ordinal logistic regression 
A cumulative logit parameterization is used in ordinal logistic regression models. However, there 
are several ways in which this can be done. Table 3.1 shows the common parameterizations for 
the cumulative logit model, where J represents the number of levels in the categorical response 
variable, and p represents the number of explanatory variables. The most common 
parameterizations are models 1 and 2 where the outcome of interest is observing “Y less than or 
equal to j” where j is one of the ordered categories the response variable. For model 3, the 
cumulative logit parameterization specifies that the outcome of interest is observing “Y greater 
than j”. Regardless of the parameterization, the model will have J-1 cutoffs (also referred to as 
intercepts or threshold values), denoted by �! in the parameterizations below, and one parameter 
for each explanatory variable. This allows for the intercept to vary for each cumulative logit. 
However, the model assumes that each explanatory variable exerts the same effect on each 
cumulative logit. This is why the ordinal logistic regression model is also known as a 
proportional-odds model. 

Table 3.1: Three parameterizations of the ordinal logistic regression model. 
Parameterization 

�(� ≤ �)
Model 1 log $1 − �(� ≤ �)- = �! − 0�"�" + �#�# +⋯+ �$�$5, � = 1,… , � − 1 

�(� ≤ �)
Model 2 log $1 − �(� ≤ �)- = �! + �"�" + �#�# +⋯+ �$�$, � = 1,… , � − 1 

�(� > �)
Model 3 log $1 − �(� > �)- = �! + �"�" + �#�# +⋯+ �$�$, � = 2,… , � − 1, � 

Model 1 incorporates a negative sign so that there is a direct correspondence between the slope 
and the ranking. Thus a positive coefficient indicates that as the value of the explanatory variable 
increases, the likelihood of a higher ranking increases. This is also the case for the 
parameterization of model 3, but notice that the intercepts will differ between model 1 and model 
3. 

4 Software packages for fitting ordinal logistic regression 
Ordinal logistic regression models can be estimated in most statistical software packages. Some 
possible implementations include: 

• SAS: proc logistic or proc genmod 
• R: clm in the “ordinal” package, vglm in the “VGAM” package, polr in the “MASS” 

package, and lrm in the “rms” package 
• Stata: ologit command 
• JMP: fit model menu with the response variable classified as ordinal 
• SPSS: generalized linear model menu or the ordinal regression menu 
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Besides knowing the parameterization of the cumulative logit implemented by a software 
package, a researcher must also be aware of the coding scheme and choice of reference level for 
categorical explanatory variables. R, Stata, SPSS, and SAS (using proc genmod) use dummy 
coding, while JMP and SAS (using proc logistic) use effect coding . Both R and Stata use the 
first level alphanumerically as the reference level, whereas SAS, JMP, and SPSS use the last 
level as the reference level. However, it is possible to customize the reference level in each of 
these programs. 

Table 4.1: Output for models 1, 2, and 3 in different software packages. 
Stata, R 
(polr or 
clm) 

R (vglm) R (lrm) SPSS 
JMP or 
SAS (proc 
logistic) 

SAS (proc 
genmod) 

Model: 1 2 3 1 2 2 
Coding: Dummy Dummy Dummy Dummy Effect Dummy 
Threshold 1, �": −1.858 −1.858 1.858 −1.690 −1.774 −1.691 

Threshold 2, �#: −0.232 −0.232 0.232 −0.064 −0.148 −0.064 

coefficient for Gender=1 
indicator −0.168 0.168 −0.168 na na na 

coefficient for Gender=0 
indicator na na na 0.168 −0.084 −0.168 

5 Model interpretation 
As an example, using the Stata output we can write the functional form of the ordinal regression 
as follows: 

�(� ≤ 1)
log %1 − �(� ≤ 1)- = −1.858 + 0.168 ∗ Gender 

One way to interpret the coefficients is via a proportional odds ratio. The model parameterization 
dictates the interpretation of the odds ratio. Using Stata’s estimates, the odds ratio for gender is 
exp(−�") = exp(0.168) = 1.18. Thus the odds of rating a lower score is 1.18 times higher for 
man than it is for women. 
In R (vglm), the same interpretation holds but the odds ratio is computed by exponentiating the 
parameter estimate without adding the negative sign: exp(�") = exp(0.168) = 1.18. 
However, for SAS proc genmod we would say that the odds of women rating a mattress with a 
higher score is 0.84 times as large as it is for men: exp(�") = exp(−0.168) = 0.84. Note this is 
the same interpretation as above because we are dividing the odds for women by the odds for 
men, and 0.84 = 1/1.18. 

6 Predicted probabilities and proportional odds 
assumption 
As in binary logistic regression, we can compute predicted probabilities in an ordinal logistic 
regression. For example, using the Model 2 parameterization, 
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�(� ≤ �)
log %1 − �(� ≤ �)- = �! + �"�" + �#�# + ⋯ + �$�$, 

the predicted probabilities are 

�%%&'&(&&''('&⋯&'(((
�(� ≤ �) = .

1 + �%%&'&(&&''('&⋯&'((( 

When the assumption of proportional odds is satisfied, the predicted probabilities from the model 
will be similar to the observed proportions. Table 6.1 shows the predicted probabilities from the 
ordinal logistic regression model as well as the observed proportions (in parentheses) of each 
ratings within each gender. Note that although the model outputs in Table 4.1 are different due to 
the parameterizations used by each software package, they all agree in interpretation and 
estimate the same predicted probabilities. 

Table 6.1: Predicted probability of each rating for males and females along with observed proportions (in 
parentheses). 

Female (0) Male (1) 
Uncomfortable (1) 0.135 (0.136) 0.156 (0.155) 
Comfortable (2) 0.307 (0.306) 0.328 (0.33) 
Very Comfortable (3) 0.558 (0.558) 0.516 (0.515) 

Tests are available to assess the assumption of proportional odds. In Stata, the brant command 
applied after an ordinal logistic model provides one method for testing the assumption of 
proportional odds. In R, the nominal_test() function in the ordinal package can be used to test 
this assumption. SAS includes the test for the proportional odds assumption automatically in the 
output, as does SPSS’s ordinal regression menu. JMP does not offer a test of proportional odds. 
In the absence of a test, one can fit both an ordinal logistic regression and a multinomial logistic 
regression to compare the AIC values. If the proportional odds assumption is not met, one can 
use a multinomial logistic regression model, an adjacent-categories logistic model, or a partial 
proportional odds model. 
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