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1 Introduction 
Multicollinearity is one potential challenge of fitting a multiple linear regression model. If a 
model is proposed in which a some of the predictor variables have strong linear relationships 
with each other, then the resulting regression coefficients can be unstable (with large standard 
errors) and difficult to interpret. This situation, in which correlations or strong linear 
relationships exist among the predictor variables, is known as multicollinearity. 
Multicollinearity can have two effects on the regression analysis. First, the regression parameters 
will be unstable from sample to sample because the standard errors of the regression parameters 
are very large. Second, the interpretation of the regression parameters as the effect of one 
predictor while holding the other predictors constant is not very informative. This is because if 
predictors are highly correlated, holding one predictor constant immediately limits the extent to 
which the other predictors can vary. 

2 Diagnosing multicollinearity 
2.1 Pairwise correlations 
One way of diagnosing multicollinearity involves examining the correlation matrix of the 
predictor variables (i.e. all pairwise correlations among the predictors). High (close to 1 in 
absolute value) pairwise correlations may suggest multicollinearity, but multicollinearity can still 
exist when all pairwise correlations are close to zero. This is because linear relationships can 
exist among more than two predictors even when their pairwise correlations are small. 

2.2 Variance inflation factors (VIFs) 
Another way to detect multicollinearity is to calculate Variance Inflation Factors (VIFs). Each 
VIF corresopnds to a single predictor variable. For the �th predictor, the VIF represents the 
amount by which the variance of the �th regression coefficient is inflated due to linear 
relationships between that predictor and the remaining predictors. If a predictor has exactly zero 
correlation with every one of the other predictors, then its VIF is equal to one, representing no 
inflation of the variance of its regression coefficient. In all other cases, the �th VIF will be larger 
than one, and hence the variance of the �th regression coefficient is inflated due to linear 
relationships between the �th predictor and the other predictors. 

The �th VIF can also be thought of as a measure of the fit of a regression model where �th 
predictor is treated as the dependent variable, and the remaining predictors are treated as 
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"&#$ " independent variables. The �th VIF is equal to "1 − �! , where �! is the the multiple R-
" squared from this model. Since �! is close to 1 when the other predictors have strong linear 

relationships to the �th predictor, the VIF will be large when those linear relationships are strong. 

2.3 Other approaches 
Condition indices are another measure of collinearity.  The Principal Components Analysis 
creates new combinations (called components) of all the information in the existing predictor 
variables. These components are helpful because each represents unique information, i.e., they 
are always uncorrelated. 
Once the components are created, the condition indices will be computed as ratios of the 
variances between two components. Condition indices larger than 30 suggest there might be 
multicollinearity because one component may represent little or no unique information. That is, 
one component may have little information to represent if the information has already been “used 
up” by the other components. 
Finally, multicollinearity may also be indicated when removing or adding a predictor leads to 
surprisingly large changes in the fitted regression coefficients, or when the sign of a regression 
coefficient is surprising based on substantive knowledge. 
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