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Overview 

Ordinal logistic regression is a statistical analysis method that can be used to model the 

relationship between an ordinal response variable and one or more explanatory variables. An 

ordinal variable is a categorical variable for which there is a clear ordering of the category levels. 

The explanatory variables may be either continuous or categorical. Estimating ordinal logistic 

regression models with statistical software is not difficult, but the interpretation of the model 

output can be cumbersome. 

Ordinal logistic regression is an extension of logistic regression (see StatNews #81) where the 

logit (i.e. the log odds) of a binary response is linearly related to the independent variables. If 

instead the response variable has k levels, then there are k-1 logits. A major assumption of 

ordinal logistic regression is the assumption of proportional odds: the effect of an independent 

variable is constant for each increase in the level of the response. Hence the output of an ordinal 

logistic regression will contain an intercept for each level of the response except one, and a 

single slope for each explanatory variable. 

There are several ways in which an ordinal regression model can be parameterized and different 

statistical software packages use different parameterizations. Thus, great care should be taken 

when interpreting the output from ordinal regression models. We will consider an example to 

illustrate the different model parameterizations and corresponding interpretation for several 

commonly used statistical software packages. 

Example dataset 

Suppose that customers at a bedding store are asked to rate how comfortable they find a newly 

engineered mattress on a scale from 1 to 3; 1 for uncomfortable, 2 for comfortable, 3 for very 

comfortable. The categorical explanatory variable of interest is the gender of the respondent; 0 

for female, 1 for male. The simulated dataset consists of 400 total observations. Table 1 displays 

the number and proportion of participants within each gender responding with each of the rating 

categories. 

Table 1: Number and proportion of females and males who responded in each rating category. 

 Female (0) Male (1) 

http://cscu.cornell.edu/news/archive.php
https://cscu.cornell.edu/news/Statnews-data/stnews91.csv


Cornell Statistical Consulting Unit 

 Female (0) Male (1) 

Uncomfortable (1) 28 (0.136) 30 (0.155) 

Comfortable (2) 63 (0.306) 64 (0.33) 

Very Comfortable (3) 115 (0.558) 100 (0.515) 

Parameterizations of ordinal logistic regression 

A cumulative logit parameterization is used in ordinal logistic regression models. However, there 

are several ways in which this can be done. Table 2 shows the common parameterizations for the 

cumulative logit model, where J represents the number of levels in the categorical response 

variable, and p represents the number of explanatory variables. The most common 

parameterizations are models 1 and 2 where the outcome of interest is observing “Y less than or 

equal to j” where j is one of the ordered categories the response variable. For model 3, the 

cumulative logit parameterization specifies that the outcome of interest is observing “Y greater 

than j”. Regardless of the parameterization, the model will have J-1 cutoffs (also referred to as 

intercepts or threshold values), denoted by 𝛼𝑗 in the parameterizations below, and one parameter 

for each explanatory variable. This allows for the intercept to vary for each cumulative logit. 

However, the model assumes that each explanatory variable exerts the same effect on each 

cumulative logit. This is why the ordinal logistic regression model is also known as a 

proportional-odds model. 

Table 2: Three parameterizations of the ordinal logistic regression model. 

 Parameterization 

Model 1 log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = 𝛼𝑗 − (𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝),   𝑗 = 1, … , 𝐽 − 1 

Model 2 log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = 𝛼𝑗 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+𝛽𝑝𝑥𝑝,   𝑗 = 1, … , 𝐽 − 1 

Model 3 log (
𝑃(𝑌 > 𝑗)

1 − 𝑃(𝑌 > 𝑗)
) = 𝛼𝑗 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+𝛽𝑝𝑥𝑝,   𝑗 = 2, … , 𝐽 − 1, 𝐽 

Model 1 incorporates a negative sign so that there is a direct correspondence between the slope 

and the ranking. Thus a positive coefficient indicates that as the value of the explanatory variable 

increases, the likelihood of a higher ranking increases. This is also the case for the 

parameterization of model 3, but notice that the intercepts will differ between model 1 and model 

3. 

Software packages for fitting ordinal logistic regression 

Ordinal logistic regression models can be estimated in most statistical software packages. Some 

possible implementations include: 

• SAS: proc logistic or proc genmod 

• R: clm in the “ordinal” package, vglm in the “VGAM” package, polr in the “MASS” 

package, and lrm in the “rms” package 

• Stata: ologit command 
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• JMP: fit model menu with the response variable classified as ordinal 

• SPSS: generalized linear model menu or the ordinal regression menu 

Besides knowing the parameterization of the cumulative logit implemented by a software 

package, a researcher must also be aware of the coding scheme and choice of reference level for 

categorical explanatory variables. R, Stata, SPSS, and SAS (using proc genmod) use dummy 

coding, while JMP and SAS (using proc logistic) use effect coding (see Statnews #72 for more 

information on these two coding schemes). Both R and Stata use the first level alphanumerically 

as the reference level, whereas SAS, JMP, and SPSS use the last level as the reference level. 

However, it is possible to customize the reference level in each of these programs. 

Table 3: Output for models 1, 2, and 3 in different software packages. 

 
Stata, R (polr 

or clm) 

R 

(vglm) R (lrm) SPSS 

JMP or SAS (proc 

logistic) 

SAS (proc 

genmod) 

Model: 1 2 3 1 2 2 

Coding: Dummy Dummy Dummy Dummy Effect Dummy 

Threshold 1, 𝛼1: −1.858 −1.858 1.858 −1.690 −1.774 −1.691 

Threshold 2, 𝛼2: −0.232 −0.232 0.232 −0.064 −0.148 −0.064 

coefficient for 

Gender=1 indicator 
−0.168 0.168 −0.168 na na na 

coefficient for 

Gender=0 indicator 
na na na 0.168 −0.084 −0.168 

Model interpretation 

As an example, using the Stata output we can write the functional form of the ordinal regression 

as follows: 

log (
𝑃(𝑌 ≤ 1)

1 − 𝑃(𝑌 ≤ 1)
) = −1.858 + 0.168 ∗ Gender 

One way to interpret the coefficients is via a proportional odds ratio. The model parameterization 

dictates the interpretation of the odds ratio. Using Stat’s estimates, the odds ratio for gender is 

exp(−𝛽1) = exp(0.168) = 1.18. Thus the odds of rating a lower score is 1.18 times higher for 

man than it is for women. 

In R (vglm), the same interpretation holds but the odds ratio is computed by exponentiating the 

parameter estimate without adding the negative sign: exp(𝛽1) = exp(0.168) = 1.18. 

However, for SAS proc genmod we would say that the odds of women rating a mattress with a 

higher score is 0.84 times as large as it is for men: exp(𝛽1) = exp(−0.168) = 0.84. Note this is 

the same interpretation as above because we are dividing the odds for women by the odds for 

men, and 0.84 = 1/1.18. 

Predicted probabilities and proportional odds assumption 

As in binary logistic regression, we can compute predicted probabilities in an ordinal logistic 

regression. For example, using the Model 2 parameterization, 

http://cscu.cornell.edu/news/archive.php
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log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = 𝛼𝑗 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝, 

the predicted probabilities are 

𝑃(𝑌 ≤ 𝑗) =
𝑒𝛼𝑗+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

1 + 𝑒𝛼𝑗+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝
. 

When the assumption of proportional odds is satisfied, the predicted probabilities from the model 

will be similar to the observed proportions. Table 4 shows the predicted probabilities from the 

ordinal logistic regression model as well as the observed proportions (in parentheses) of each 

ratings within each gender. Note that although the model outputs in Table 3 are different due to 

the parameterizations used by each software package, they all agree in interpretation and 

estimate the same predicted probabilities. 

Table 4: Predicted probability of each rating for males and females along with observed proportions (in 

parentheses). 

 Female (0) Male (1) 

Uncomfortable (1) 0.135 (0.136) 0.156 (0.155) 

Comfortable (2) 0.307 (0.306) 0.328 (0.33) 

Very Comfortable (3) 0.558 (0.558) 0.516 (0.515) 

Tests are available to assess the assumption of proportional odds. In Stata, the brant command 

applied after an ordinal logistic model provides one method for testing the assumption of 

proportional odds. In R, the nominal_test() function in the ordinal package can be used to test 

this assumption. SAS includes the test for the proportional odds assumption automatically in the 

output, as does SPSS’s ordinal regression menu. JMP does not offer a test of proportional odds. 

In the absence of a test, one can fit both an ordinal logistic regression and a multinomial logistic 

regression to compare the AIC values. If the proportional odds assumption is not met, one can 

use a multinomial logistic regression model, an adjacent-categories logistic model, or a partial 

proportional odds model. 

If you need assistance with the implementation or interpretation of an ordinal logistic model or 

have any other statistical consulting questions, please feel free to contact the statistical 

consultants at CSCU. 
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